Using Machine Learning to Simplify Endpoint Security
Could it be the key to reducing Cyber as well as Natural Disasters?
Mother Nature continues to flex her muscles with extreme weather events around the world. Whether it is the threat of wildfires in the Amazon, California and Sydney or the floods in northern England and Venice. These events are worrying but are timely reminders of why researchers are working on how to use machine learning as a disaster preparedness and response tool. Because machines can quickly analyse massive amounts of data from numerous sources, the goal is to use that information to help community leaders and emergency response teams make more informed decisions.
Like natural disaster preparedness and response, machine learning also has important implications for endpoint security and the disaster that could originate on an endpoint while under cyberattack. Machine learning is key to improved security by way of a direct pull-through from IT asset management.
An IT Asset Management Job with a Security Outcome
Within the context of IT asset management, organisations are busier than ever trying to manage the growing number of endpoint devices, applications and data. IT complexity has reached all-time highs. Machine learning has been a very valuable tool for managing that complexity and, while doing so, can also make direct contributions to better security and more resilient endpoints. With the power of machine learning, you’re not only gaining improved visibility into your assets, you’re learning more about the actions and events happening there and finding patterns.
With patterns inevitably come outliers and so often that’s where vulnerabilities hide. Being able to recognise outliers and remediating any resulting risk is how endpoints – and enterprises – become more resilient.
Keeping machines up to date is an IT management job, but it’s a security outcome. Knowing what devices should be on the network is an IT management problem, but it has a security outcome. And knowing what’s going on and what processes are running and what’s consuming network bandwidth is an IT management problem, but it’s a security outcome. We should not see these as distinct activities so much as seeing them as multiple facets of the same problem space.
The growing number of assets is a challenge, certainly. And as security becomes an increasingly critical risk, organisations have been layering on more and more security tools – ten or more agents on each endpoint, says our research. But increased security spend does not equate to improved security. That much is painfully clear. Instead, you’re left with a complex environment full of competing, fallible agents and, consequently, a false sense of security.
Visibility is key and machine learning can deliver a complete data set that then gives you invaluable insight on what is happening on your endpoints. This way, you can work to reduce complexity and improve endpoint resiliency.
Header image source: Jirsak/shutterstock.com
To see how Absolute’s range of software offerings can support your endpoint security needs, refer to our flyer.
Read more insights…
whitepaper
Integrating Generative AI into Sales
Until the public release of ChatGPT in November 2022, the debate about the impact of generative AI on work was largely academic. In the short time since its launch, the discussion has become very real. Generative AI is changing the way people work – and fast.
blog
Empowering the Future of Work with 5G-Enabled TOUGHBOOK Devices
With all TOUGHBOOK rugged devices now able to connect with 5G standalone and private networks, Panasonic is enhancing operational efficiency for mobile workers that require superfast connectivity and ultra-low latency in the field.
blog
The Future of B2B Marketing Requires a New Marketer
The last industrial revolution changed the way we work forever. The next one is happening right now. But this time, it’s not about steam engines or assembly lines. It’s about artificial intelligence (AI) and its power to reshape B2B marketing as we know it.
Case Study
Streamlining The Analysis of Polluted Soil
Ginger BURGEAP, a French environmental consultancy, faced challenges with traditional paper-based data collection in harsh field conditions, leading to inefficiencies. By adopting TerraIndex software and Panasonic TOUGHBOOK tablets, they streamlined their operations, ensuring seamless traceability and reliability in data handling.
Sorry there was an error...
The files you selected could not be downloaded as they do not exist.
You selected items.
Continue to select additional items or download selected items together as a zip file.
You selected 1 item.
Continue to select additional items or download the selected item directly.
Share page
Share this link via:
Twitter
LinkedIn
Xing
Facebook
Or copy link: